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 We have all implicitly dealt with sets
 Integers (Z), rationals (Q), naturals (N), reals (R), 

etc.
 We will develop more fully 

 The definitions of sets 
 The properties  of sets
 The operations on sets

 Definition:  A set is an unordered collection of (unique) 
objects

 Sets are fundamental discrete structures and for the 
basis of more complex discrete structures like graphs

Introduction: Part One
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 The objects in a set are called elements or 
members of a set. A set is said to contain 
its elements

 Notation, for a set A:
 x ∈ A: x is an element of A                                 
 x ∉ A: x is not an element of A

Introduction: Part Two
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Properties: Part One

 Two sets, A and B, are equal is they 
contain the same elements.  We write A=B.

 Example:
 {2,3,5,7}={3,2,7,5}, because a set is 

unordered
 Also, {2,3,5,7}={2,2,3,5,3,7} because a set 

contains unique elements
 However, {2,3,5,7} ≠{2,3}                                

5



Properties: Part Two

 A multi-set is a set where you specify the 
number of occurrences of each element: 
{m1⋅a1,m2⋅a2,…,mr⋅ar} is a set where 
 m1 occurs a1 times 
 m2 occurs a2 times
 …
 mr occurs ar times

 In Databases, we distinguish
 A set: elements cannot be repeated
 A bag: elements can be repeated
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Terminology

 The set-builder notation
O={ x | (x∈Z) ∧ (x=2k) for some k∈Z}

reads: O is the set that contains all x such that x 
is an integer and x is even

 A set is defined in intension when you give its 
set-builder notation
O={ x | (x∈Z) ∧ (0≤x≤8) ∧ (x=2k) for some k ∈ Z }

 A set is defined in extension when you 
enumerate all the elements:

O={0,2,4,6,8}
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Venn Diagram: 

 A set can be represented graphically using a 
Venn Diagram

U

a

x y

z

A

C

B
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Properties and Notation: Part One

 A set that has no elements is called the empty 
set or null set and is denoted ∅

 A set that has one element is called a singleton 
set.  
 For example: {a}, with brackets, is a singleton set
 a, without brackets, is an element of the set {a}

 Note the subtlety in ∅ ≠ {∅} 
 The left-hand side is the empty set
 The right hand-side is a singleton set, and a set 

containing a set
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Properties and Notation: Part Two 

 For any set S 
 ∅ ⊆ S and
 S ⊆ S

 A is said to be a subset of B, and we write 
A ⊆ B, if and only if every element of A is 
also an element of B                 

 That is, we have the equivalence:
A ⊆ B  ⇔ ∀ x (x ∈ A ⇒ x ∈ B)
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Properties and Notation: Part Three 

• A set A that is a subset of a set B is called 
a proper subset if A ≠ B.  

• That is there is an element x∈B such that 
x∉A

• We write: A ⊂ B, 
If there are exactly n distinct elements in a set S, 
with n a nonnegative integer, we say that:

S is a finite set, and
The cardinality of S is n.  Notation: |S| = n.

A set that is not finite is said to be infinite
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Equivalence: Part One

 To show that a set is 
 a subset of, 
 proper subset of, or 
 equal to another set.

 To prove that A is a subset of B, use the equivalence 
discussed earlier A ⊆ B  ⇔ ∀x(x∈A ⇒ x∈B)
 To prove that A ⊆ B it is enough to show that for an arbitrary 

(nonspecific) element x, x∈A implies that x is also in B.

 To prove that A is a proper subset of B, you must prove
 A is a subset of B and
 ∃x (x∈B) ∧ (x∉A)
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Equivalence:  Part Two

 To show that two sets are equal, it is sufficient 
to show independently (much like a 
biconditional) that 
 A ⊆ B and 
 B ⊆ A

 Logically speaking, you must show the following 
quantified statements:

(∀x (x∈A ⇒ x∈B)) ∧ (∀x (x∈B ⇒ x∈A))
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Power Set

 The power set of a set S, denoted P(S), is the set of all 
subsets of S.

 Examples
 Let A={a,b,c}, 

P(A)={∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}
 Let A={{a,b},c}, P(A)={∅,{{a,b}},{c},{{a,b},c}}

 Note: the empty set ∅ and the set itself are always 
elements of the power set.  

 The power set is a fundamental combinatorial object 
useful when considering all possible combinations of 
elements of a set

 Let S be a set such that |S|=n, then
|P(S)| = 2n
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Tuples 

 Sometimes we need to consider ordered 
collections of objects

 The ordered n-tuple (a1,a2,…,an) is the 
ordered collection with the element ai being 
the i-th element for i=1,2,…,n

 A 2-tuple (n=2) is called an ordered pair
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Cartesian Product

 Let A and B be two sets.  The Cartesian product of A 
and B, denoted AxB, is the set of all ordered pairs (a,b) 
where a∈A and b∈B

AxB = { (a,b) | (a∈A) ∧ (b ∈ B) }
 The Cartesian product is also known as the cross 

product
 A subset of a Cartesian product, R ⊆ AxB is called a 

relation. 
 Note: AxB ≠ BxA unless A=∅ or B=∅ or A=B
 Cartesian Products can be generalized for any n-tuple
 The Cartesian product of n sets, A1,A2, …, An, denoted 

A1×A2×… ×An, is
A1×A2×… ×An ={ (a1,a2,…,an) | ai ∈ Ai for i=1,2,…,n}

16



Notation with Quantifiers

 Whenever we wrote ∃xP(x) or ∀xP(x), we specified the 
universe of discourse using explicit English language

 Now we can simplify things using set notation!
 Example

 ∀ x ∈ R (x2≥0)
 ∃ x ∈ Z (x2=1)
 Also mixing quantifiers:

∀a,b,c ∈ R ∃ x ∈ C (ax2+bx+c=0)
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Set Operations

 Arithmetic operators (+,-, × ,÷) and set operators exist 
and act on two sets to give us new sets
 Union
 Intersection 
 Set difference
 Set complement
 Generalized union 
 Generalized intersection
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Set Operators: Union

 The union of two sets A and B is the set that contains all 
elements in A, B, r both.  We write:

A∪B = { x | (x ∈ A) ∨ (x ∈ B) }

U
A B
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Set Operators: Intersection

 The intersection of two sets A and B is the set that 
contains all elements that are element of both A and B.  
We write:

A ∩ B = { x | (x ∈ A) ∧ (x ∈ B) }

U
A B
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Disjoint Sets

 Two sets are said to be disjoint if their 
intersection is the empty set: A ∩ B = ∅

U
A B
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Set Difference

 The difference of two sets A and B, denoted A\B or A−B, 
is the set containing those elements that are in A but 
not in B

U A B

A - B = { x | (x ∈ A) ∧ (x∉B) }
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Set Complement

 Definition: The complement of a set A, denoted A, 
consists of all elements not in A.  That is the difference 
of the universal set and U: U\A

A= A = {x | x ∉ A }

U A A
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Generalized Union

 The union of a collection of sets is the set 
that contains those elements that are 
members of at least one set in the 
collection

∪ Ai = A1 ∪ A2 ∪ … ∪ An
i=
1

n
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Generalized Intersection

 The intersection of a collection of sets is the 
set that contains those elements that are 
members of every set in the collection

∩ Ai = A1 ∩ A2 ∩…∩ Ani=1

n
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Relation
A relation is any set of ordered pairs.

A special kind of relation, called a function, is very important 
in mathematics and its applications.

Function
A function is a relation in which, for each value of the first 

component of the ordered pairs, there is exactly one value 
of the second component.

In a relation, the set of all values of the independent variable 
(x) is the domain. 

The set of all values of the dependent variable (y) is the 
range

Relations and Functions
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Introduction to Functions
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Tables and Graphs

Graph of the function, F

x

y

Table of the 
function, F

x y
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0 0

2 –6

O
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Function Notation

When a function f is defined with a rule or an equation using x and y for the 
independent and dependent variables, we say “y is a function of x” to 
emphasize that y depends on x. We use the notation

y = f (x),

called function notation, to express this and read f (x), as “f of x”. 

The letter f stands for function. For example, if y = 5x – 2, we can name
this function f and write

f (x) = 5x – 2.

Note that f (x) is just another name for the dependent variable y.
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Linear Function

A function that can be defined by

f (x) = ax + b,

for real numbers a and b is a linear function. 

The value of a is the slope of m of the graph of the 
function.  Before we can draw a graph of our 
function we must look at the co-ordinate plane or 
the Cartesian Co-ordinate plane. 
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The Co-ordinate Plane

A function that can be defined by f (x) = ax + b,

The plane of the grid is 
called the coordinate plane.

The horizontal number line
is called the ______.x-axis

The vertical number line
is called the ______.y-

axis
The point of intersection of 
the two axes is called the 
origin

x

y
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Graphing a Function

An ordered pair of real numbers, called coordinates of a point, locates a
point in the coordinate plane.

Each ordered pair corresponds to EXACTLY ________ in the 
coordinate plane.

one point

The point in the coordinate plane is called the graph of the ordered pair.

Locating a point on the coordinate plane is called _______ the ordered pair.graphing
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Definition: Logarithmic Function

For x > 0 and b > 0, b = 1,
y = logb x is equivalent to by = x.

The function f (x) = logb x is the logarithmic 
function with base b.

Logarithmic form: y = logb x Exponential Form: by = x.

Exponent Exponent

Base Base
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Properties of Logarithms

For x > 0 and b ≠ 1,
 logb bx = x  The logarithm with base b of 

b raised to a power equals that power.
 b logb x = x  b raised to the logarithm with 

base b of a number equals that number.

General Properties: Common Logarithms
1. logb 1 = 0 1. log 1 = 0
2. logb b = 1 2. log 10 = 1
3. logb bx = 0 3. log 10x = x
4. b logb x = x 4. 10 log x = x
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Properties of Natural Logarithms

General Properties Natural Logarithms
1. logb 1 = 0 1. ln 1 = 0
2. logb b = 1 2. ln e = 1
3. logb bx = 0 3. ln ex = x
4. b logb x = x 4. e ln x = x

The function y=ex has an inverse called the Natural 
Logarithmic Function.

Y=ln x
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Properties of Natural Logarithms

y=ex and y=ln x are inverses of each other!
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Characteristics of f(x) = logbx

 The x-intercept is 1. There is no y-intercept.
 The y-axis is a vertical asymptote. (x = 0)
 If 0 < b < 1, the function is decreasing. If b > 1, the 

function is increasing. 
 The graph is smooth and continuous. It has no sharp 

corners or edges.
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f (x) = logb x
0<b<1

39



Domain of Logarithmic Functions

Because the logarithmic function is the inverse 
of the exponential function, its domain and 
range are the reversed.

The domain is { x | x > 0 } and the range will 
be all real numbers.  

For variations of the basic graph, say 
the domain will consist of all x for 

which x + c > 0.

( )( ) logbf x x c= +
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Right Triangle Trigonometry

Trigonometry is based upon ratios of the sides of right triangles.

The six trigonometric functions of a right triangle, with an acute 
angle , are defined by ratios of two sides of the triangle.

θ

opphyp

adjThe sides of the right triangle are:
 the side opposite the acute angle ,
 the side adjacent to the acute angle , 

 and the hypotenuse of the right triangle.
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A

A

The hypotenuse is the longest side and is always opposite 
the right angle.

The opposite and adjacent sides refer to another angle, 
other than the 90o.

Right Triangle Trigonometry
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The trigonometric functions are:
sine, cosine, tangent, cotangent, secant, and cosecant.

opp

adj

hyp

θ

sin  = cos  = tan  =

csc  = sec  = cot  = 
opp
hyp

adj
hyp

hyp
adj

adj
opp

opp
adj

hyp
opp

Trigonometric Ratios
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Reciprocal Functions

sin θ = 1/csc θ csc θ = 1/sin θ
cos θ = 1/sec θ sec θ = 1/cos θ
tan θ = 1/cot θ cot θ = 1/tan θ

46



Important Trigonometric Identities

Co function Identities
sin θ = cos(90− θ ) cos θ = sin(90− θ )
sin θ = cos (π/2− θ ) cos θ = sin (π/2− θ )
tan θ = cot(90− θ ) cot θ = tan(90− θ )
tan θ = cot (π/2− θ ) cot θ = tan (π/2− θ )
sec θ = csc(90− θ ) csc θ = sec(90− θ ) 
sec θ = csc (π/2− θ ) csc θ = sec (π/2− θ )

Reciprocal Identities

sin θ = 1/csc θ cos θ = 1/sec θ tan θ = 1/cot θ
cot θ = 1/tan θ sec θ = 1/cos θ csc θ = 1/sin θ

Quotient Identities
tan θ = sin θ /cos θ cot θ = cos θ /sin θ

Pythagorean Identities
sin2 θ + cos2 θ = 1   tan2 θ + 1 =  sec2 θ cot2 θ + 1 = csc2 θ
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Definition
Vector analysis is a mathematical tool with which 
electromagnetic (EM) concepts are most conveniently 
expressed and best comprehended. 

A quantity is called a scalar if it has only magnitude 
(e.g., mass, temperature, electric potential, 
population).

A quantity is called a vector if it has both magnitude 
and direction (e.g., velocity, force, electric field 
intensity).

The magnitude of a vector   is a scalar written as A 
or

A

A
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Unit Vector: Part One

A unit vector      along     is defined as a vector 
whose magnitude is unity (that is,1) and its 
direction is along 

Thus: 

A
A

A
AeA == )e( A 1=

Ae

AeAA =

which completely specifies      in terms of A and its 
direction Ae

A
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Unit Vector: Part Two
A unit vector      along     is defined as a vector 

whose magnitude is unity (that is,1) and its 
direction is along 

Thus:       

which completely specifies      in terms of A and its 
direction 

A
A

A
AeA == )e( A 1=

Ae

AeAA =

Ae
A

A vector      in Cartesian (or rectangular) coordinates 
may be represented as

Where:
where AX, Ay, and AZ are called the components of      
in the x, y, and z directions, respectively;     ,     , and

are unit vectors in the x, y and z directions, 
respectively.

zzyyxx eAeAeA ++)A,A,A( zyx

A

A

 

xe

 

ze

 

ye
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Coordinate Systems

Common coordinate systems are:
 Cartesian
 Polar

Also called rectangular coordinate 
system
x- and y- axes intersect at the 
origin
Points are labeled (x,y)
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Polar Coordinate System

Origin and reference line 
are noted
Point is distance r from 
the origin in the direction 
of angle θ, ccw from 
reference line

 The reference line is 
often the x-axis.

Points are labeled (r,θ)
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Polar to Cartesian Coordinates

Based on forming a right 
triangle from r and θ

x = r cos θ
y = r sin θ

If the Cartesian 
coordinates are known:

2 2

tan y
x

r x y

θ =

= +
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Vector Addition, Rules
The three basic laws of algebra obeyed by any given 

vector
A, B, and C, are summarized as follows:

Commutative

Associative

Distributive

where k and l are scalars

ABBA +=+

C)BA()CB(A ++=++

kAAk =

A)kl()Al(k =

BkAk)BA(k +=+
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Vector Multiplication: Part One
When two vectors     and     are multiplied, the result is
either a scalar or a vector depending on how they are
multiplied. The two types of vector multiplication:

1. Scalar (or dot) product:

2.Vector (or cross) product:

The dot product of the two vectors     and     is defined
geometrically as the product of the magnitude of     and 
The projection of     onto      (or vice versa):

where       is the smaller angle between    and

A

ABcosABBA θ=⋅

BA ⋅

B

ABθ

A

BA ×

A B
B

B

A B
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Vector Multiplication: Part Two
The cross product of two vectors     and     is defined as

where     is a unit vector normal to the plane containing     
and     . The direction of     is determined using the right-
hand rule or the right-handed screw rule.

A

A

nABesinABBA θ=×

B

B

ne
ne

BA ×

Direction of       
and        using 
(a) right-hand 
rule,
(b) right-handed

screw rule

ne
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Vector Multiplication: Part Three
Note that the cross product has the following basic
properties:
(i) It is not commutative:

It is anticommutative:

(ii) It is not associative:

(iii) It is distributive:

(iv)

ABBA ×≠×

ABBA ×−=×

C)BA()CB(A ××≠××

CABACBA ×+×=+× )(

0AA =× )0(sin =θ
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Differential Calculus

The two basic forms of calculus are 
 differential calculus and 
 integral calculus. 
This lecture will be devoted to the former.  
Integral Calculus will be presented in 
another lecture. 
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Differentiation and the Derivative

The study of calculus begins with the basic definition of 
a derivative. A derivative is obtained through the process 
of differentiation, and the study of all forms of 
differentiation is collectively referred to as differential 
calculus.
If we begin with a function and determine its derivative, 
we arrive at a new function called the first derivative. 
If we differentiate the first derivative, we arrive at a new 
function called the second derivative, and so on.
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Definition of Derivative

x∆

y∆

( )y f x=

x

y

63

The derivative of a function is the slope at a 
given point.



Various Symbols for the Derivative

( )  or    '( )  or  dy df xf x
dx dx

0
Definition:    lim

x

dy y
dx x∆ →

∆
=

∆
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Piecewise Linear Segment

1 1( , )x y

2 2( , )x y

2 1y y−

2 1x x−

65

2 1

2 1

slope y ydy
dx x x

−
= =

−



Example of a Simple Derivative

2y x=

66

2 22 ( )y y x x x x+ ∆ = + ∆ + ∆
22 ( )y x x x∆ = ∆ + ∆

0
lim 2
x

dy y x
dx x∆ →

∆
= =

∆



Chain Rule of Differentiation

( )y f u=

67

( )u u x=

( ) '( )dy df u du duf u
dx du dx dx

= =

( )'( ) df uf u
du

=where



Table of Derivatives: Part One

( )f x '( )f x Derivative Number

( )af x '( )af x D-1

( ) ( )u x v x+ '( ) '( )u x v x+ D-2

( )f u ( )'( ) du df u duf u
dx du dx

=
D-3

a 0 D-4

          ( 0)nx n ≠ 1nnx − D-5

          ( 0)nu n ≠ 1n dunu
dx

−
D-6

uv dv duu v
dx dx

+ D-7

u
v

2

du dvv u
dx dx

v

− D-8

ue u due
dx D-9
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Table of Derivatives:Part Two

ua ( )ln u dua a
dx D-10

ln u 1 du
u dx D-11

loga u ( ) 1loga
due

u dx D-12

sin u
cos duu

dx
 
 
 

D-13

cosu
sin duu

dx
− D-14

tan u 2sec duu
dx D-15

1sin u−
1

2

1           sin
2 21

du u
dxu

π π− − ≤ ≤ 
 −

D-16

1cos u−

2

1           
1

du
dxu

−

−
( )1 0 cos u π−≤ ≤ D-17

1tan u−
1

2

1            tan
1 2 2

du u
u dx

π π− − < < +  
D-18



Higher-Order Derivatives

( )y f x=

70

( )'( )dy df xf x
dx dx

= =

2 2

2 2

( )''( )d y d f x d dyf x
dx dx dx dx

 = = =  
 

3 3 2
(3)

3 3 2

( )( )d y d f x d d yf x
dx dx dx dx

 
= = =  

 



Applications: Maxima and Minima

 1. Determine the derivative.
 2. Set the derivative to 0 and solve for 

values that satisfy the equation.
 3. Determine the second derivative.

 (a) If second derivative > 0, point is a 
minimum.

 (b) If second derivative < 0, point is a 
maximum.
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Displacement, Velocity, Acceleration

Displacement

Velocity

Acceleration

dyv
dt

=

72

y

2

2

dv d ya
dt dt

= =
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The total differential and total derivative 

 

..............

),...,(  function  variable-nfor  

is    aldifferenti  total  the  ,0  and  0  as  

]),(),([]),(),([

),(),(),(),(     
),(),(

  and  
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xxxf
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Total Differential 
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If a function can be obtained by directly integrating its 
total differential,  the differential of function f is called 
exact differential, whereas those that do not are inexact 
differential. 

aldifferentiinexact  existdoesnot     ),(  function       
3  (2)

aldifferentiexact         ),()1(  (1)

⇒⇒
+=

+=⇒++=

yxf
ydxxdydf

xxyyxfdxyxdydf

Exact and Inexact Differentials 

Properties of exact differentials:

x
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x
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∂
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The chain rule 
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Directional Derivatives: Part One

 Recall that, if z = f(x, y), then the partial 
derivatives fx and fy are defined as:

0 0 0 0
0 0 0

0 0 0 0
0 0 0

( , ) ( , )( , ) lim

( , ) ( , )( , ) lim

x h

y h

f x h y f x yf x y
h

f x y h f x yf x y
h

→

→

+ −
=

+ −
=
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 Suppose that we now wish to find the rate 
of change of z at (x0, y0) in the direction of 
an arbitrary unit vector u = <a, b>.

 To do this, we consider 
the surface S with 
equation z = f(x, y) [the 
graph of f ] and we let 
z0 = f(x0, y0).

 Then, the point P(x0, 
y0, z0) lies on S.

Directional Derivatives: Part Two
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 The vertical plane that 
passes through P
in the direction of u
intersects S in 
a curve C.

 The slope of the 
tangent line T to C
at the point P is the 
rate of change of z
in the direction 
of u.

Directional Derivatives: Part Three
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Now, let:
Q(x, y, z) be another point 
on C.
P’, Q’ be the projections of 
P, Q on the xy-plane.
Then the vector          is 
parallel to U. 
So: 

For some scaler h. 
Therefore:

x –x0 = ha
y –y0 = hb

' '

P Q

' '
,

P Q h
ha hb

=
= 〈 〉

u


Directional Derivatives: Part Four
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From: x –x0 = ha
y –y0 = hb

Then:

In the limit as h → 0, we obtain 
the rate of change of z in the 
direction of U.
This is called the directional 
derivative of f in the direction of 
U.

0

0 0 0, 0( , ) ( )

z zz
h h

f x ha y hb f x y
h

−∆
=

+ + −
=

0 0

0 0 0 0

0

( , )
( , ) ( , )lim

h

D f x y
f x ha y hb f x y

h→

+ + −
=

u

Directional Derivatives: Part Five
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If we define a function g of the single 
variable h by

If we define a function g of the single variable h by:

then, by the definition of a derivative, we have the following 
equation.

( , ) ( , ) ( , )x yD f x y f x y a f x y b= +u

0 0( ) ( , )= + +g h f x ha y hb

0

0 0 0 0

0

0 0

'(0)
( ) (0)lim

( , ) ( , )lim

( , )

h

h

g
g h g

h
f x ha y hb f x y

h

D f x y

→

→

−
=

+ + −
=

= u

Directional Derivatives: Part Six
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Suppose the unit vector u
makes an angle θ with 
the positive x-axis, as 
shown. Then, we can 
write u = <cos θ, sin θ>
and the directional 
derivative becomes:

( , ) ( , ) cos ( , )sinx yD f x y f x y f x yθ θ= +u

Notice that the directional derivative can be written as the dot 
product of two vectors:

( , ) ( , ) ( , )
( , ), ( , ) ,
( , ), ( , )

x y

x y

x y

D f x y f x y a f x y b
f x y f x y a b
f x y f x y

= +

= 〈 〉 ⋅ 〈 〉

= 〈 〉 ⋅

u

u

Directional Derivatives: Part Seven
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The first vector in that dot product occurs not only in 
computing directional derivatives but in many other contexts 
as well. This directional derivative is called the Gradient of f.
The Gradient of f is written as:       f which is read as “del f”
If f is a function of two variables x and y then the gradient of 
f(x,y) is defined as:

We can rewrite the expression for the directional derivative 
as:

This expresses the directional derivative in the direction of u
as the scalar projection of the gradient vector onto u.

∇

( , ) ( , ), ( , )x yf x y f x y f x y
f f
x x

∇ = 〈 〉

∂ ∂
= +

∂ ∂
i j

( , ) ( , )D f x y f x y= ∇ ⋅u u

The Gradient: Part One
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For functions of three variables, we can define directional 
derivatives in a similar manner.
The directional derivative of f at (x0, y0, z0) in the direction of 
a unit vector u = <a, b, c> is: 

Using vector notation we can rewrite the directional derivative 
as:

where: 
 x0 = <x0, y0> if n = 2
 x0 = <x0, y0, z0> if n = 3

0 0 0

0 0 0 0 0 0

0

( , , )
( , , ) ( , , )lim

h

D f x y z
f x ha y hb z hc f x y z

h→

+ + + −
=

u

0 0
0 0

( ) ( )( ) lim
h

f h fD f
h→

+ −
=u

x u xx

The Gradient: Part Two
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For a function f of three variables, the gradient vector, 
denoted by       or grad f, is: 

And is written as:

The directional derivative can be rewritten as:

The maximum value of the directional derivative Duf(x) 
is:             and it occurs when u has the same direction as the 
gradient vector 

f∇
( , , )

( , , ), ( , , , ), ( , , )x y z

f x y z
f x y z f x y z f x y z

∇
= 〈 〉

, ,x y zf f f f
f f f
x y z

∇ = 〈 〉

∂ ∂ ∂
= + +

∂ ∂ ∂
i j k

( , , ) ( , , )D f x y z f x y z= ∇ ⋅u u

| ( ) |f∇ x
( )f∇ x

The Gradient: Part Three
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Suppose S is a surface with equation F(x, y, z) that is, it is a 
level surface of a function F of three variables.
Then, let P(x0, y0, z0) be a point on S.
Then, let C be any curve that lies on the surface S and passes 
through the point P.

The curve C is described by a 
continuous vector function 
r(t) = <x(t), y(t), z(t)>
The gradient vector at P          
is perpendicular to the tangent 
vector r’(t0) and to any curve C
on S that passes through P. 
Thus the direction of the 
normal line is given by the 
gradient vector.

0 0 0( , , )F x y z∇

0 0 0( , , )F x y z∇

Tangent Plane
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We now summarize the ways in which the gradient vector is 
significant. 
For a function f of three variables and a point P(x0, y0, z0) 
in its domain we know that the gradient vector                         
gives the direction of fastest increase of f. 0 0 0( , , )f x y z∇

On the other hand, we know 
that                      is orthogonal 
to the level surface S of f
through P. 
So, it seems reasonable that, if 
we move in the perpendicular 
direction, we get the maximum 
increase.

0 0 0( , , )f x y z∇

Summary of Gradient
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Chapter Six:
Integral Calculus

91

Developed for Azera Global

By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. 



The basic concepts of differential calculus
were covered in the preceding 
presentation. This presentation will be 
devoted to integral calculus, which is the 
other broad area of calculus. 
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Integral Calculus



Anti-Derivatives

An anti-derivative of a function f(x) is a new function 
F(x) such that

( ) ( )dF x f x
dx

=

93



Indefinite and Definite Integrals

( )f x dx∫

94

2

1
( )

x

x
f x dx∫

Indefinite

Definite



Definite Integral/ Area Under the Curve

1y 2y
3y 4y

Ky

a b x

y

5y
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Approximate Area k
k

y x= ∆∑

lim
b

ka x dx k
ydx y x

∆ →
= ∆∑∫

Exact Area as Definite Integral



Definite Integral with Variable Upper Limit

x

a
ydx∫
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( )
x

a
y u du∫

More “proper” form with “dummy” variable



Guidelines

 If y is a non-zero constant, integral is either 
increasing or decreasing linearly.

 If segment is triangular, integral is increasing or 
decreasing as a parabola.

 If y=0, integral remains at previous level.
 Integral moves up or down from previous level; 

i.e., no sudden jumps.
 Beginning and end points are good reference 

levels.
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Tabulation of Integrals

( ) ( )F x f x dx= ∫
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( )
b

a
I f x dx= ∫

]( ) ( ) ( )b

a
I F x F b F a= = −



Common Integrals: Part One

( )f x ( ) ( )F x f x dx= ∫ Integral Number

( )af x ( )aF x I-1

( ) ( )u x v x+ ( ) ( )u x dx v x dx+∫ ∫ I-2

a ax I-3

( )          1nx n ≠ − 1

1

nx
n

+

+

I-4

axe axe
a

I-5

1
x ln x I-6

sin ax
1 cos ax
a

− I-7

cos ax
1 sin ax
a I-8

2sin ax
1 1 sin 2
2 4

x ax
a

− I-9
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Common Integrals: Part Two

2cos ax
1 1 sin 2
2 4

x ax
a

+ I-10

sinx ax 2

1 sin cosxax ax
a a

− I-11

cosx ax 2

1 cos sinxax ax
a a

+ I-12

sin cosax ax 21 sin
2

ax
a I-13

sin cosax bx
2 2for a b≠

cos( ) cos( )
2( ) 2( )

a b x a b x
a b a b

− +
− −

− +
I-14

axxe ( )2 1
axe ax

a
− I-15

ln x ( )ln 1x x −
I-16

2

1
ax b+

11 tan ax
bab

−  
  
 

I-17
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Displacement, Velocity, Acceleration

( )

2 2( ) acceleration in meters/second  (m/s )
( ) velocity in meters/second (m/s)
( ) displacement in meters m

a a t
v v t
y y t

= =
= =

= =
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( )dv a t
dt

= ( )dvdv dt a t dt
dt

 = = 
 

( )dv a t dt=∫ ∫

dv v=∫

1( )v a t dt C= +∫

( )dy v t
dt

=

( )dydy dt v t dt
dt

 = = 
 

2( )y v t dt C= +∫



102

Chapter Seven:
Complex Variables 

Developed for the Azera Group

By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. 



Complex Algebra: Part One

Functions of a complex variable provide some powerful and 
widely useful tools in Engineering and physics.
• Some important physical quantities are complex variables (the 

wave-function Ψ)
• Evaluating definite integrals.
• Obtaining asymptotic solutions of differentials equations.
• Integral transforms
• Many Physical quantities that were originally real become complex
as simple theory is made more general. The energy  
(         → the finite life time).

A complex number z = (x,y) = x + iy, Where. 
Complex numbers first arose from the solution of quadratic 

equations of the type:
x2 + 1 = 0

Γ+→ iEE nn
0

Γ/1
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Complex Algebra: Part Two

Although both parts of the complex number are real the 
ordering of two real numbers (x,y) is significant, 

 X: the real part, labeled by Re(z); 
 y: the imaginary part, labeled by Im(z)

θierz ⋅=
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The relation between Cartesian and polar representation:

The choice of polar representation or Cartesian 
representation is a matter of convenience. Addition 
and subtraction of complex variables are easier in the 
Cartesian representation. 

Multiplication, division,  powers, roots are easier to 
handle in polar form,

( )
( )

1/ 22 2

1tan /

r z x y

y xθ −

= = +

=

Complex Algebra: Part Three
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Using Cartesian Co-ordinates:

Using polar co-ordinates:
( )21

2121
θθ += ierrzz

( ) ( )21
2121 // θθ −= ierrzz

θinnn erz =

)()(
)()(

2221212121

212121

yxyxiyyxxzz
yyixxzz

++−=
±+±=±

Complex Algebra: Part Four



From z, complex functions f(z) may be constructed. They can be 
written     f(z) = u(x,y) + iv(x,y) in which v and u are real functions. 

For example if                , we have 

The relationship between z and f(z) is best pictured as a 
mapping operation, we address it in detail later.

)arg()arg()arg( 2121 zzzz +=
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2121 zzzz =

( ) ( ) xyiyxzf 222 +−=

Using the polar form,

2)( zzf =

Complex Algebra: Part Five
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Function:  Mapping operation

x

y Z-plane

u

v

The function w(x,y)=u(x,y)+iv(x,y) maps points in the xy plane into points
in the uv plane.

nin

i

ie
ie

)sin(cos
sincos

θθ

θθ
θ

θ

+=

+=

We get a not so obvious formula

Since

ninin )sin(cossincos θθθθ +=+



Replacing i by –i, which is denoted by (*),

We then have

Note:

ln z is a multi-valued function. We usually set n=0 and limit the phase to an 
interval of length of 2π. The value of lnz with n=0 is called the principal value of 
lnz.
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iyxz −=*

222* ryxzz =+= ( ) 21*zzz =

θirez = ( )πθ nire 2+

θ+= irlnzln ( )πθ nirz 2lnln ++=

Complex Conjugation
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Another possibility

∞→>
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   x;real afor  1|cos||,sin|
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Cauchy – Riemann: Part One
Having established complex functions, we now proceed to

differentiate them. The derivative of f(z), like that of a real function, is
defined by

provided that the limit is independent of the particular approach to the 
point z. For real variable, we require that 

( ) ( ) ( ) ( )zf
dz
df

z
zf

z
zfzzf

zz
′===

−+
→→ δ

δ
δ

δ
δδ 00
limlim

( ) ( ) ( )o
xxxx

xfxfxf
oo

′=′=′
−+ →→

limlim
,

Now, with z (or z0) some point in a plane, our requirement that 
the limit be independent of the direction of approach is very 
restrictive.



Cauchy–Riemann: Part Two

Consider
yixz δδδ +=
viuf δδδ +=

, yix
viu

z
f

δδ
δδ

δ
δ

+
+

=

Let us take limit by the two different approaches as in the 
figure. First,

with δy = 0, we let δx0,







 +=

→→ x
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z
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xz δ
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δδ 00
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u

∂
∂

+
∂
∂

=
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Assuming the partial derivatives exist. For a second approach, 
we set  δx = 0 and then let δy 0. This leads to 

If we have a derivative, the above two results must be identical. 
So,
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∂
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∂
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−=
∂
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Cauchy–Riemann: Part Three

These are the famous Cauchy-Riemann conditions. These 
Cauchy-Riemann conditions are necessary for the 
existence of a derivative, that  is, if      exists, the C-R 
conditions must hold.

Conversely, if the C-R conditions are satisfied and the 
partial derivatives of u(x,y) and v(x,y) are continuous,      
then        exists. 
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Analytic functions: Part One

If f(z) is differentiable at              and in some small 
region around          ,we say that f(z) is analytic at  

 Differentiable:  If Cauchy-Riemann conditions are satisfied 
the partial derivatives of u and v are continuous

For Analytic functions: 022 =∇=∇ vu

0zz =

0zz = 0z

 For integration: In close analogy to the integral of a real 
function, The contour               is divided into n 
intervals .Let                         for j. Then 

'
00 zz →

01 →−=∆ −jjj zzz

( ) ( )∫∑
′

=
∞→

=∆
0

01

lim
z

z

n

j
jj

n
dzzfzf ζ

∞→n

The right-hand side of the above equation is called the contour (path) 
integral of f(z)
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( ) ( )∫∑
′

=
∞→

=∆
0

01

lim
z

z

n

j
jj

n
dzzfzf ζ

The right-hand side of the above equation is called the contour (path) 
integral of f(z)

. and 
bewteen curve on thepoint  a is  where

 , and  points  thechoosing
 of details  theoft independen

 is and existslimit   that theprovided

1

j

j

−jj

j

zz

z
ζ

ζ

Analytic functions: Part Two



As an alternative, the contour may be defined by

with the path C specified. This reduces the complex integral to the 
complex sum of real integrals. It’s somewhat analogous to the case of 
the vector integral.
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udyvdxivdyudx

Analytic functions: Part Three



An important example 

where C is a circle of radius r>0 around the origin z=0 in the direction 
of counterclockwise.

In polar coordinates, we parameterize 
and ,    and have 
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∫
c

ndzz

θ= irez
θ= θdiredz i

( )[ ]∫∫ +=
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Analytic functions: Part Four



If a function f(z) is analytical (therefore single-valued) 
[and its partial derivatives are continuous] through 
some simply connected region R, for every closed path 
C in R,

118

( ) 0=∫ dzzf
c

Cauchy’s integral Theorem: Part One

Stokes’ theorem:
Proof: (under relatively restrictive condition: the partial 
derivative of u, v are continuous, which are actually not 
required but usually  satisfied in physical problems)

( ) ( ) ( )∫ ∫ ∫ ++−=
c c c

udyvdxivdyudxdzzf



These two line integrals can be converted to surface 
integrals by Stokes’ theorem

Cauchy’s integral Theorem: Part Two

∫ ∫ ⋅×∇=⋅
c s

sdAldA

yAxAA yx
 += zdxdyds =

( )∫ ∫ ∫ ⋅×∇=⋅=+
c c s

yx sdAldAdyAdxA ∫ 
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For the real part, If we let u = Ax, and v = -Ay, 
then( ) dxdy

y
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x
vvdyudx
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∂
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For the imaginary part, setting u = Ay and v = Ax, we have

The consequence of the theorem is that for analytic functions the line 
integral is a function only of its end points, independent of the path of 
integration,
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1

2

2

1

12

z

z

z

z

dzzfzFzFdzzf

Cauchy’s integral Theorem:Part Three



 The original statement of our theorem demanded a simply 
connected region. This restriction may easily be relaxed by the 
creation of a barrier, a contour line. 

 Consider the multiply connected region of the figure below In which 
f(z) is not defined for the interior R′
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Multiply Connected Regions: One



Cauchy’s integral theorem is not valid for the contour C, but we can
construct a C′ for which the theorem holds. If line segments DE and 
GA arbitrarily close together, then
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( ) ( )∫∫ −=
E

D

A

G

dzzfdzzf

Multiply Connected Regions: Two



'
2

'
1     CEFGCABD −→→
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( )

( )

( )dzzfdzzf
EFGGADEABD

ABDEFGA
C














+++= ∫∫∫∫∫

′

( ) 0dzzf
EFGABD

=







+= ∫∫

( ) ( )∫∫
′′

=

21 CC

dzzfdzzf

Multiply Connected Regions: Three



If f(z) is analytic on and within a closed contour C then

in which z0 is some point in the interior region bounded by 
C. Note that here z-z0 ≠0 and the integral is well defined.

Although f(z) is assumed analytic, the integrand (f(z)/z-z0) 
is not analytic at z=z0 unless f(z0)=0. If the contour is 
deformed as in the figure on the next slide 

Cauchy’s integral theorem applies.
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( ) ( )0
0

2 zif
zz
dzzf

C

π=
−∫

Cauchy’s Integral Formula: One 



So we have

Let                    , here r is small and will eventually be made to
approach zero 

(r→0) 
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Cauchy’s Integral Formula: Two 



Here is a remarkable result. The value of an analytic 
function is given at an interior point at z=z0 once the 
values on the boundary C are specified.

What happens if z0 is exterior to C?
In this case the entire integral is analytic on and within C, 

so the integral vanishes.
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Cauchy’s Integral Formula: Three 
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Cauchy’s integral formula may be used to obtain an expression for 
the derivation of f(z)

Moreover, for the n-th order of derivative
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Cauchy’s Integral Formula: Four 



We now see that, the requirement that f(z) be analytic not 
only guarantees a first derivative but derivatives of all 
orders as well! The derivatives of f(z) are automatically 
analytic. Here, it is worth to indicate that the converse of 
Cauchy’s integral theorem holds as well 
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∴

Morera’s theorem: 

Cauchy’s Integral Formula: Five 



Liouville’s theorem: If f(z) is analytic and bounded in the 
complex plane, it is a constant.

Proof: For any z0, construct a circle of radius R around z0,
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Liouville’s Theorem: Part One



Since R is arbitrary, let                ,  we have

Conversely, the slightest deviation of an analytic function from a 
constant value implies that there must be at least one singularity 
somewhere in the infinite complex plane. Apart from the trivial 

constant functions, then, singularities are a fact of life, and we must 
learn to live  with them, and to use them further.
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Liouville’s Theorem: Part Two 



Taylor Expansion
Suppose we are trying to expand f(z) about z=z0, i.e.,
and we have z=z1 as the nearest point for which f(z) is not analytic. We 

construct a circle C centered at z=z0 with radius 

From the Cauchy integral formula,

131

( ) ( )∑
∞

−

−=
0n

n
0n zzazf

010 zzzz −<−′

( ) ( ) ( )
( ) ( )∫∫ −−−′

′′
π

=
−′

′′
π

=
C 00C zzzz

zdzf
i2

1
zz
zdzf

i2
1zf

( )
( ) ( ) ( )[ ]∫ −′−−−′

′′
π

=
C 000 zzzz1zz

zdzf
i2

1

Laurent Series: Part One 



Here z′ is a point on C and z is any point interior to C. For 
|t| <1, we note the identity

So we may write

which is our desired Taylor expansion, just as for real variable power
series, this expansion is unique for a given z0.
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Laurent Series: Part Two 

From the binomial expansion of                               for integer n, 
it is easy to see, for real x0
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We frequently encounter functions that are analytic in 
annular region
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Laurent Series: Part Three 

Drawing an imaginary contour 
line to convert our region into a 
simply connected region, we 
apply Cauchy’s integral formula 
for C2 and C1,  with radii r2 and r1, 
and obtain
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We let r2 →r and r1 →R, so for C1,                    while for C2,                 . 
We expand two denominators and we get:

(Laurent Series)
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Laurent Series: Part Four 



Drawing an imaginary contour line to convert our region into 
a simply connected region, we apply Cauchy’s integral 
formula for C2 and C1,  with radii r2 and r1, and obtain

We let r2 →r and r1 →R, so for C1,                    while for C2,                 . 
We expand two denominators as we did before
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Laurent Series: Part Five 



Where:

Here C may be any contour with the annular region r < |z-
z0| < R encircling z0 once in a counterclockwise sense.

Laurent Series need not to come from evaluation of 
contour integrals. Other techniques such as ordinary 
series expansion may provide the coefficients.
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For example

which has a simple pole at z = -1 and is analytic
elsewhere. For |z| < 1, the geometric series expansion f1,
while expanding it about z=i leads to f2, 
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Analytic Continuation: Part One
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Suppose we expand it about z = i, so that

converges for (Fig.1.10)

The above three equations are different representations of the same 
function. Each representation has its own domain of convergence.
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If two analytic functions coincide in any region, such as the overlap of s1 and s2,
of coincide on any line segment, they are the same function in the sense that they
will coincide everywhere as long as they are well-defined.

Analytic Continuation: Part Two
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